Sama seperti sebelumnya, gradien pada persamaan garis ax + by + c = 0 dapat ditentukan dengan cara mengubah terlebih dahulu persamaan garis tersebut ke dalam bentuk y = mx + c
. Kemudian, nilai gradien diperoleh dari nilai konstanta m di depan variabel x.
Contoh Soal :
Tentukanlah gradien dari persamaan garis berikut.
a. x + 2y + 6 = 0 d. 4x + 5y = 9
b. 2x – 3y – 8 = 0 e. 2y – 6x + 1 = 0
c. x + y – 10 = 0
Jawab :
a. Persamaan garis x + 2y + 6 = 0 diubah terlebih dahulu menjadi
bentuk y = mx
+ ca. x + 2y + 6 = 0 d. 4x + 5y = 9
b. 2x – 3y – 8 = 0 e. 2y – 6x + 1 = 0
c. x + y – 10 = 0
Jawab :
a. Persamaan garis x + 2y + 6 = 0 diubah terlebih dahulu menjadi
sehingga
b. Persamaan garis 2x – 3y – 8 = 0 diubah terlebih
dahulu menjadi bentuk y = mx + c
sehingga
sehingga
c. Persamaan garis x + y –10 = 0 diubah terlebih
dahulu menjadi bentuk y = mx + c
sehingga
x + y –10 = 0
y = –x + 10 Jadi, nilai m = –1.
d. Persamaan garis 4x + 5y = 9 diubah terlebih dahulu menjadi bentuk y = mx + c
sehingga
sehingga
x + y –10 = 0
y = –x + 10 Jadi, nilai m = –1.
d. Persamaan garis 4x + 5y = 9 diubah terlebih dahulu menjadi bentuk y = mx + c
sehingga
e. Persamaan garis 2y – 6x + 1 = 0 diubah terlebih
dahulu menjadi bentuk y = mx + c
sehingga
sehingga
Tidak ada komentar:
Posting Komentar